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Abstract—The StreamIt programming model has been pro-
posed to exploit parallelism in streaming applications on general
purpose multi-core architectures. This model allows program-
mers to specify the structure of a program as a set of filters
that act upon data, and a set of communication channels
between them. The StreamIt graphs describe task, data and
pipeline parallelism which can be exploited on modern Graphics
Processing Units (GPUs), as they support abundant parallelism
in hardware.

In this paper, we describe the challenges in mapping StreamIt
to GPUs and propose an efficient technique to software pipeline
the execution of stream programs on GPUs. We formulate
this problem — both scheduling and assignment of filters to
processors — as an efficient Integer Linear Program (ILP), which
is then solved using ILP solvers. We also describe a novel buffer
layout technique for GPUs which facilitates exploiting the high
memory bandwidth available in GPUs. The proposed scheduling
utilizes both the scalar units in GPU, to exploit data parallelism,
and multiprocessors, to exploit task and pipeline parallelism.
Further it takes into consideration the synchronization and
bandwidth limitations of GPUs, and yields speedups between
1.87X and 36.83X over a single threaded CPU.

Index Terms—CUDA; GPU Programming; Software Pipelin-
ing; Stream Programming

I. INTRODUCTION

Graphics Processing Units (GPUs) have emerged from
being fixed function pipelines to massively parallel Turing
complete machines, capable of performing general purpose
computation. The latest generation of GPUs, consisting of
hundreds of stream processing units are capable of supporting
thousands of concurrently executing threads, with zero-cost
hardware controlled context switching between threads. For
instance the ATI Radeon 4870 has 800 stream processors
connected by a 256-bit wide bus to 512 MB of memory,
while the GeForce 8800 GTS 512 consists of 128 stream
processors [1], organized as 16 multiprocessors, with a similar
memory configuration. Each of the multiprocessors in the
NVIDIA GPUs can be conceptually viewed as a very wide
SIMD processor. While CPUs have traditionally added hier-
archies of caches to tolerate memory latency, GPUs address
the problem by providing a high bandwidth processor–memory
link and supporting high degrees of Simultaneous Multithread-
ing (SMT) within the processing elements, which switches
to another set of threads, while the current set of threads is
waiting for data from memory. This combination of SIMD and

SMT enables these devices to achieve a peak throughput of
400 GFLOPs [2].

The high performance of GPUs, however, comes at the cost
of reduced flexibility and greater programming effort from the
user. For instance, in the NVIDIA GPUs, threads executing
on different multiprocessors can neither synchronize in an
efficient manner, nor can they communicate in a reliable and
consistent manner through the device memory, within a kernel
invocation [1]. Also, the GPU cannot access the memory of
the host system, requiring the CPU to initiate any transfer from
the host memory to device memory or vice-versa. Finally,
while the memory bus is capable of delivering very high
bandwidth, accesses to device memory by threads executing
on a multiprocessor, need to be coalesced in order to actually
achieve the high bandwidth. All these factors translate to a
greater programming effort from the user.

ATI and NVIDIA have proposed CTM [3] and CUDA [4]
frameworks, respectively, for developing general purpose ap-
plications targeting the GPUs. However, both of these frame-
works still require the programmer to express the program
as data-parallel computations, that can be executed efficiently
on the GPU. Also, programming with these frameworks tie
the application to the platform. Any change in the platform
would require significant rework in porting the applications.
Further, these frameworks provide only low-level synchroniza-
tion primitives, which the programmer would need to adapt to
suit the application’s requirements. All these factors contribute
to the steep learning curve associated with these frameworks.

On the other hand, the StreamIt programming language,
proposed to express streaming applications in a platform
independent manner, aims to expose task, data and pipeline
parallelism in the application in a natural way [5]. The
advantage of this approach is that an optimizing compiler for
a target platform can exploit parallelism in the most efficient
manner for each target platform, without requiring significant
effort from the programmer. A StreamIt program is expressed
as a hierarchical composition of simple stream structures,
which may then be flattened [6] into a set of filters connected
by FIFO channels. Apart from providing a natural way to
express streaming applications, this frees the programmer from
orchestrating the communication between filters. Brook [7]
and Accelerator [8] are two prior works which use GPUs for
streaming and general purpose computations. However, these
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provide a single kernel execution as the base abstraction, with
the programmer having to manually handle communication
between kernels [7], or require that the programmer express
the program using special data structures like the data parallel
array [8]. These techniques still require considerable effort by
the programmer in order to transform the streaming application
to execute efficiently on the GPU. A recent proposal maps
StreamIt onto the CellBE platform [9], whose programming
model is vastly different from that of GPUs. Figure 1 illustrates
the differences between various paradigms.

To efficiently harness the compute and bandwidth resources
of the CPU, parallelism must be exploited at various levels:

1) The data parallelism across threads executing on a
multiprocessor.

2) The SMT parallelism among threads on the same mul-
tiprocessor needs to be managed to provide optimum
performance. Higher levels of SMT do not automatically
translate to higher performance, since the number of
registers in each multiprocessor is fixed. Exceeding the
number of available registers, in a blind attempt to
increase the level of SMT parallelism, causes spills into
the longer latency device memory, which could degrade
performance.

3) Parallelism offered by having multiple multiprocessors
on a GPU should be used to exploit the task and pipeline
level parallelism in the StreamIt program.

Further, accesses to device memory need to be coalesced as
far as possible to ensure optimal usage of available bandwidth.
Clearly, these challenges have created a gap between being
able to express streaming applications naturally and efficiently
and targeting the GPUs to execute these streaming applica-
tions. Our work attempts to bridge this gap.

This paper makes the following contributions:

1) We describe a software pipelining framework for effi-
ciently mapping StreamIt programs onto GPUs.

2) We present a buffer mapping scheme for StreamIt pro-
grams to make efficient use of the memory bandwidth
of the GPU.

3) We describe a profile based approach to decide on the
optimal number of threads assigned to a multiprocessor,
henceforth called execution configuration for StreamIt
filters.

4) We implement our scheme in the StreamIt compiler and
demonstrate a 1.87X to 36.83X speedup over a single
threaded CPU on a set of streaming applications.

The rest of the paper is organized as follows: Section
II provides an overview of the StreamIt language and the
organization of the NVIDIA GeForce 8800 series of GPUs.
Sections III and IV detail the ILP formulation used for
scheduling the stream program across multiprocessors and the
code generation for the GPU, respectively. In Section V we
report the experimental results. Section VI discusses related
work and Section VII provides concluding remarks.
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Fig. 1. Differences between various paradigms, with the execution of a
saxpy kernel as an example. The saxpy kernel computes the function z[i] =
s×x[i] + y[i], where s is a scalar. Each vertical arrow represents one thread
of execution. The flow of data is from top to bottom. (a) Execution in a
unithreaded CPU, which processes elements in a loop. (b) Execution in a
CPU with a 4-wide SIMD unit, 4 elements are processed in one iteration,
reducing the trip-count of the loop. (c) Execution in a GPU, where thousands
of iterations of the kernel are carried out in parallel, greatly reducing the
trip-count of the loop. (d) Approach taken in [9]
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Fig. 2. Organization of the NVIDIA GeForce 8800 series of GPUs

II. BACKGROUND

A. Organization of the GPU

Figure 2(a) shows The architecture of the GeForce 8800
series of GPUs [1] which consists of 16 Streaming Multi-
processors (labelled SMn in Figure 2(a)), which share read-
only texture and constant caches and a global device memory.
Unlike a constant, a texture can be bound to any address
in the device memory by the host processor prior to kernel
invocation. The program executing on the GPU can access the
data referred to by the texture in a cached fashion by issuing
texture fetches. The architecture of an individual SM consists
of 8 Scalar Units (labelled SU0 – SU7 in Figure 2(b)), with
a common instruction fetch and thread control mechanism.
The shared memory is akin to a software managed cache
accessible by all the SUs in an SM. Each SM also has a
large partitioned 32-bit register file, with 8192 registers. The
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Fig. 3. The StreamIt constructs. (a) Pipeline, (b) Split-Join and (c) Feedback
Loop

memory bus connecting the SMs and the device memory is
256 or 384 bits wide (depending on the model).

Within each SM, threads execute in a Single Instruction
Multiple Data (SIMD) fashion. The hardware periodically
switches between threads to hide the latency of memory ac-
cesses. The basic hardware schedulable entity is a warp, which
consists of 32 threads with consecutive threadids. Threads in
a warp execute in lockstep. The number of threads that may
be active simultaneously depends on the register requirements
of each thread. The CUDA compiler allows the programmer
to restrict the number of registers allocated per thread at
compile time, generating spill code if necessary. From the
programmer’s point of view, threads are grouped into thread
blocks, each of which consists of a maximum of 512 threads.
All threads of a thread block are assigned to exactly one SM
by the CUDA runtime. A kernel call dispatched to the GPU
through the CUDA runtime consists of exactly one grid, which
is a group of thread blocks. Every thread has access to its
threadID and the blockID of the thread block it belongs to by
means of local variables named threadIdx and blockIdx,
respectively, that are passed by the runtime. Further details
on the organization of the NVIDIA GPUs and the CUDA
programming model can be found in [1].

Efficient usage of the available memory bandwidth requires
that simultaneous accesses to the device memory by the
threads of a warp be to contiguous addresses, with the first
warp addressing the first bank. Formally, thread N of a warp
must access an address of the form WarpBaseAddress+N ,
with WarpBaseAddress ≡ 0 mod Number of Banks. Such
accesses by all threads can then be coalesced into a single
access [1].

B. The StreamIt Language

A StreamIt program consists of filters (also called nodes)
connected by communication channels. Hierarchical compo-
sition of stream graphs is achieved using split–join, pipeline
and feedback loop constructs [6], shown in Figure 3. A splitter
can either be a duplicate splitter, in which case it copies every
element in its input FIFO to each of its outputs, or a round
robbin splitter, in which case it copies each element from
its input FIFO into exactly one output FIFO, based on its
weights. A filter may consume one or more tokens (values)
from its input FIFO by executing the pop() method, and may
produce one or more tokens into its output FIFO by executing

the push() method. A filter may also inspect its input
FIFO without consuming a token by executing the peek(n)
method, where n is the depth into the FIFO at which the value
is inspected. These are the only primitives by which filters
may manipulate their input and output FIFOs. The tokens in
the FIFO buffers can either be objects of primitive types like
int, float, etc, or can be objects of user defined types. The push
rate and the pop rate of a filter are defined to be the number
of tokens produced and consumed, respectively, during each
execution of the filter. Also, the peek depth of a filter is defined
as the depth up to which a filter can look into the input FIFO
during each execution. Note that peek depth is always greater
than or equal to pop rate. A filter is allowed to execute subject
to its firing rule, which is simply that it should have at least
peek depth tokens in its input FIFO and enough space for at
least push rate tokens in its output FIFO.

Filters may be stateful or stateless. Stateful filters are those
which have some internal state that is persistent across firings.
The state may be updated at each firing as a function of its
inputs and the previous values of the state variables [10].
This necessitates a serial ordering of the different instances
of stateful filters. On the other hand, stateless filters carry no
state from one firing to another. Hence different instances of
stateless filters can be executed concurrently. We consider only
programs with stateless filters in this work.

The push and pop rates of each node in a StreamIt program
can be non-unity and non-identical, but are fixed and known at
compile time. In order to ensure that such graphs can execute
an infinite number of times with finite buffer requirements,
the number of firings of different nodes can be different. The
firing rate of each node can be computed by solving the steady
state rate equations [11]. We call each firing of a particular
filter an instance of that filter in the schedule. A schedule in
which the execution counts (firing rates) of different filters
are governed by the steady state equations is called a steady
state schedule. A schedule in which the execution counts of
each of the nodes are mutually prime when taken pairwise is
called a primitive steady-state schedule. Two primitive steady-
state schedules may differ in the order in which the instances
of filters are invoked and hence may have different buffer
requirements. Single Appearance Schedules (SAS) [12] [11]
require the maximum buffering, while Minimum Latency
Schedules require the minimum [13]. A steady state iteration
of a stream graph is defined as one execution of the steady
state schedule.

III. ILP FORMULATION

In this section, we formulate the scheduling of the stream
graph across the multiprocessors (SMs) of the GPU as an
Integer Linear Program (ILP). We consider each instance of
each filter to be the fundamental schedulable entity.

A. Definitions

V denotes the set of all nodes (filters) in the stream graph.
N is the cardinality of V. E denotes the set of all (directed)
edges in the stream graph. kv represents the number of firings



of a filter v ∈ V , as dictated by the steady state rate equations.
P = {0, 1, ...Pmax − 1} is the set of all SMs in the GPU. T
represents the Initiation Interval (II) of the software pipelined
loop. d(v) is the delay or execution time of filter v ∈ V . Iuv

and Ouv represent the number of elements consumed by filter
v on each firing of v, and the number of filters produced by
filter u on each firing of u respectively, for an edge (u, v) ∈ E.
muv denotes the number of elements initially present on the
edge (u, v) ∈ E.

B. Resource Constraints

We define 0 – 1 integer variables wk,v,p, ∀k ∈ [0, kv), ∀v ∈
V, ∀p ∈ [0, Pmax), such that, wk,v,p = 1 implies that the kth

instance of the filter v has been assigned to SM p. We now
model various resource constraints as follows:

Pmax−1∑
p=0

wk,v,p = 1, ∀k ∈ [0, kv), ∀v ∈ V (1)

The above constraint ensures that each instance of each filter
is assigned to exactly one SM. We model the fact that all the
filter instances assigned to an SM can be scheduled in the
given II, using the constraint:

kv−1∑
k=0

∑
v∈V

(wk,v,p × d(v)) ≤ T, ∀p ∈ P (2)

C. Dependence Constraints

Before modeling the dependence constraints, we first need
to ensure that the execution of any instance of any filter cannot
wrap around into the next II. Consider the linear form of a
software pipelined schedule [14] given by: σ(j, k, v) = T ×
j + Ak,v where σ(j, k, v) represents the time at which the
execution of the kth instance of filter v in the jth steady state
iteration of the stream graph is scheduled and Ak,v are integer
variables with Ak,v ≥ 0, ∀k ∈ [0, kv), ∀v ∈ V . We write
each Ak,v as Ak,v = T ×bAk,v/T c+Ak,v mod T We define
fk,v = bAk,v/T c and ok,v = Ak,v mod T Thus, the linear
form of the schedule is given by:

σ(j, k, v) = T × (j + fk,v) + ok,v (3)

In the equation (3), the ok,v indicate the time instant in the
software pipelined kernel at which each filter must be sched-
uled to fire; The fk,v serve to set up the iteration numbers of
the instances of the filters, in the software pipelined schedule.
(fk,v−fk′,v′ ) denotes the number of iterations that the instance
k of filter v and the instance k′ of filter v′ are separated by.
Note that fk,v are integer variables greater than or equal to 0.
We now constrain the starting time of filters ok,v as follows:

ok,v + d(v) < T, ∀v ∈ V, ∀k ∈ [0, kv) (4)

This constraint ensures that every firing of a filter is scheduled
so that it can complete within the same II, preventing the
execution of a filter from wrapping around an II.

We now model the dependence constraints. In order to
ensure that the firing rule for each instance of each filter is
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Fig. 4. (a) A multirate stream graph. Filter A pushes 2 tokens on each
firing and filter B pops 3 tokens on each firing. (b) The dependency graph on
each instance of each filter, with the edges indicating the number of tokens
transmitted with each dependence.

satisfied by a schedule, the admissibility of a schedule has
been given in [15] as:

σ(i, v) ≥ σ

(⌈
(i+ 1)× Iuv −muv −Ouv

Ouv

⌉
, u

)
+ d(u),

∀(u, v) ∈ E, ∀i ≥ 0

where σ(i, v) denotes the time of the ith firing of filter v.
This admissibility condition makes an implicit assumption that
the firings of the instances of filter v are serialized. However
this assumption does not hold for the model we are building,
where instances of each filter could execute out of order, or
in parallel across different SMs, as long as the firing rule is
satisfied. So we must ensure that the schedule is admissible
with respect to all the predecessors of the ith firing of the
filter v. Figure 4 describes this scenario. Figure 4(a) shows a
multirate stream-graph where filter A pushes two elements and
filter B pops three elements on each firing. Figure 4(b) shows
the dependencies that exist between the various instances of
filter A and B. The label represents the filter and the subscript
represents the instance number, which can range from 0 to
kv − 1 for a given filter v. To model this behavior for each
edge (u, v), we need to analytically determine which instances
of a filter u produce data that is consumed by the ith firing of
a filter v. Any firing of a filter v depends on at most

⌈
Iuv

Ouv

⌉
+1

consecutive firings of filter u, ∀(u, v) ∈ E. Intuitively, the ith

firing of a filter v must wait for all the Iuv tokens produced
after its (i− 1)th firing. We model this as:

σ(i, v) ≥ σ

(⌈
i× Iuv + l −muv −Ouv

Ouv

⌉
, u

)
+ d(u),

∀l ∈ [1, Iuv], ∀(u, v) ∈ E, ∀i ≥ 0 (5)

Although it appears that there are Iuv constraints for each
edge, there are in fact at most

⌈
Iuv

Ouv

⌉
+ 1 constraints, since

some constraints are repeated.
We now derive the dependency constraints that in turn de-

termine the constraints on fk,v . Consider an edge (u, v) ∈ E.
The kth instance of filter v, in the jth steady state iteration is
denoted by σ(j, k, v). Since there are kv instances of the filter
v in one steady state iteration of the stream graph, using (5),
we get:

σ(j, k, v) ≥ σ

(⌈
(j × kv + k)× Iuv + l −muv −Ouv

Ouv

⌉
, u

)
+ d(u),

∀l ∈ [1, Iuv], ∀j ≥ 0, ∀k ∈ [0, kv), ∀(u, v) ∈ E



Since Iuv × kv = Ouv × ku according to the balanced rate
equations for multirate stream graphs [15], we can write:

σ(j, k, v) ≥ σ

(⌈
(j × ku) +

k × Iuv + l −muv −Ouv

Ouv

⌉
, u

)
+ d(u),

∀l ∈ [1, Iuv], ∀j ≥ 0, ∀k ∈ [0, kv), ∀(u, v) ∈ E

Simplifying further, we get:

σ(j, k, v) ≥ σ(j′l , k
′
l, u) + d(u),

∀l ∈ [1, Iuv], ∀j ≥ 0, ∀k ∈ [0, kv), ∀(u, v) ∈ E
Where:

j′
l = j + jlag,l

jlag,l = j +
⌊

1

ku

⌈
k × Iuv + l −muv −Ouv

Ouv

⌉⌋
, ∀l ∈ [1, Iuv]

k′
l =

⌈
k × Iuv + l −muv −Ouv

Ouv

⌉
mod ku, ∀l ∈ [1, Iuv]

Note that, k ∈ [0, kv) =⇒ jlag,l ≤ 0, ∀l ∈ [1, Iuv]. Now,
using the form in (3), we get:

T × (j+fk,v) +ok,v ≥ T × (j+ jlag,l +fk′
l
,u) +ok′

l
,u +d(u),

∀l ∈ [1, Iuv], ∀j ≥ 0, ∀k ∈ [0, kv), ∀(u, v) ∈ E

Algebraic simplification yields:

T × (fk,v − fk′
l
,u) ≥ T × jlag,l + d(u)− (ok,v − ok′

l
,u),

∀l ∈ [1, Iuv], ∀k ∈ [0, kv),∀(u, v) ∈ E (6)

This forms a system of constraints with at most
⌈

Iuv

Ouv

⌉
+ 1

constraints for each (u, v) ∈ E.
So far, we have assumed that the result of executing a filter

u is available d(u) time units after the filter u has started
executing. However, the limitations of a GPU imply that this
is not the case when the producer and consumer instances are
scheduled on different SMs. We define 0 – 1 integer variables
gl,k,u,v, ∀k ∈ [0, kv), ∀(u, v) ∈ E, ∀l ∈ [1, Iuv] as:

gl,k,u,v ≥ wk,v,p − wk′
l
,u,p

gl,k,u,v ≥ wk′
l
,u,p − wk,v,p

∀k ∈ [0, kv), ∀(u, v) ∈ E, ∀l ∈ [1, Iuv], ∀p ∈ [0, Pmax) (7)

Incorporating the additional constraint into equation (6), and
upon algebraic simplifications, we get two systems of con-
straints:

T × fk,v + ok,v ≥ T × (jlag,l + fk′
l
,u) + ok′

l
,u + d(u)

T × fk,v + ok,v ≥ T × (jlag,l + fk′
l
,u + gl,k,u,v)

∀(u, v) ∈ E, ∀k ∈ [0, kv), ∀l ∈ [1, Iuv] (8)

The two constraints are set up such that the former comes into
play when gl,k,u,v = 0 and the latter comes into play when
gl,k,u,v = 1, since ok′

l
,u + d(u) ≤ T at all times (from (4)).

The idea is that if any predecessor of the instance k of a filter
v is scheduled on an SM different from the one where the kth

instance of v is scheduled, then gl,k,u,v = 1 for some l.

Fig. 5. Overview of the compilation process, targeting a StreamIt program
onto the GPU

Note that equation (8) is independent of the iteration number
j, and forms a system of at most

⌈
Iuv

Ouv

⌉
+ 1 constraints for

each edge (u, v) ∈ E. The inequalities (1), (2), (3), (4), (7)
and (8) constitute an ILP formulation for the scheduling of the
StreamIt programs on GPUs.

IV. CODE GENERATION FOR GPUS

In this section, we describe the process of generating a
software pipelined executable of a StreamIt program targeted
for the GPU. We use the StreamIt compiler, which is a source
to source compiler and generates C-like code. This C-like code
is then compiled by the native compiler for a specific platform.
Figure 5 shows the various phases involved in our method for
compiling a StreamIt application for the GPU. The following
subsections describe each of these phases in detail.

A. Profiling and Execution Configuration Selection

As mentioned in Sections I, II and in [2] it is important
to determine the optimal execution configuration, specified by
the number of threads per block and the number of registers
allocated per thread. This is achieved by the profiling each
filter independently for different execution configurations. We
have modified the StreamIt compiler to generate the CUDA
sources along with a driver routine for each filter in the
StreamIt program. The generated CUDA code is compiled
using the nvcc compiler from NVIDIA, for execution on the
GPU. By running multiple profile runs of the same filter,
varying the number of threads and the number of registers
the filter is compiled for, we identify the optimal number of
threads — and hence the optimal level of SMT — for a given
filter. The profile runs also enable us to accurately estimate
the execution time of each filter on the GPU, for use in the
ILP formulation described in Section III.

We generate four versions of the executable for each filter
for the profile run, restricting the number of registers to 16,
20, 32 and 64 per thread. These correspond to the register
requirements that will allow the kernel to run with 512, 384,
256 and 128 threads respectively. Note that if the per-thread
register requirement of a kernel is less than the limit specified,
the compilation of the kernel is unaffected. Next, we execute
each of these four versions with 128, 256, 384 and 512 threads.
For a given execution configuration and the version of the



1: for all i ∈ [0, NumFilters− 1] do
2: for all numRegs ∈ {16, 20, 32, 64} do
3: for all numThreads ∈ {128, 256, 384, 512} do
4: execute the version of the kernel compiled for

numRegs registers with numThreads threads for
numfirings/numThreads iterations.

5: if kernel fails to execute due to lack of registers then
6: runT imes[i][numRegs][numThreads]←∞
7: else
8: runT imes[i][numRegs][numThreads]←t,

where, t is the execution time of the kernel.
9: end if

10: end for
11: end for
12: end for

Fig. 6. Algorithm for Profiling Filters

executable, if the number of registers required per thread
is greater than the number of registers the version of the
executable was compiled for, then the kernel execution fails
and the configuration is infeasible. For all the other feasible
configurations we obtain the execution time on the GPU from
these runs. To make the comparison fair, we ensure that each
execution performs the same amount of work, irrespective of
the execution configuration. We accomplish this by changing
the number of firings of the filter to be executed in each thread,
through a parameter called numThreads. This parameter is set
to be a multiple of 128, 256, 384 and 512, and is also set to
be large enough to amortize the cost of launching the kernel
on the GPU over many iterations.

Using the profile data thus obtained, we choose the globally
optimum execution configuration for the stream program, as
described in Figure 7. The set feasiblePairs used in line 2 of
the algorithm consists of all pairs (numRegs, numThreads),
such that the configuration is a feasible configuration for all the
filters. The CUDA compiler currently does not support extern
functions that can be called from a function executing on the
device. This restriction imposes that we compile the code for
all the filters as a single compilation unit, since calls to these
filter work functions will be made by the software pipelined
kernel, executing on the device. Thus we need to compile all
the filters with the same register usage restrictions. Lines 3
– 6 take into account the numThreads firings of each filter,
and recomputes the number of instances of each filter that
appears in the steady state schedule. Lines 9 – 13, calculate
the candidate initiation interval (II) that can be achieved if the
current configuration is chosen. The execution time is scaled
in Line 12, to account for the fact that the profile run executes
(numfirings/k) iterations of the filter, while we require the
execution time for only one iteration of the filter. Lines 14 –
15 scale the II by the amount of work done. This is necessary,
since the work done by the one steady state of the various
configurations may not be the same. For example, a particular
configuration might yield an II of 20 time units, and produce
200 output tokens, while another might have a higher II of
40, but produce 1000 tokens. Clearly, the latter is a better
alternative. The rest of the algorithm, picks the best number
of threads for each filter such that the resource constrained
II is minimized, and saves the optimal number of threads for

1: minII =∞
2: for all (numRegs, numThreads) ∈ feasiblePairs do
3: for all i ∈ [0, numFilters− 1] do
4: find k < numThreads corresponding to the minimal

runT imes[i][numRegs][k]
5: candidate[i]←k
6: end for
7: Solve the steady state equations for the execution config-

uration present in candidate and determine the number
of instances kv for each filter v. Store it in the array
numInstances.

8: curII ← 0
9: for all i ∈ [0, NumFilters− 1] do

10: bestT ime ← runT imes[i][numRegs][k],
where, k is chosen as in line 4

11: bestT ime← bestT ime× numInstances[i]
12: curII ← curII + bestT ime× (k/numfirings)
13: end for
14: Estimate total work w done in one II by the currently chosen

execution configuration. (A simple metric for this would be
the number of tokens produced at the sink node of the stream
graph)

15: curII ← curII/w
16: if curII < minII then
17: minII ← curII
18: bestThreads← numThreads
19: bestRegs← numRegs
20: for all i ∈ [0, NumFilters− 1] do
21: threads[i]← k, where k is chosen as in line 4
22: delay[i]← runT imes[i][numRegs][threads[i]]
23: end for
24: end if
25: end for

Fig. 7. Algorithm for Finding the Best Execution Configuration

each filter in an array called threads, and the corresponding
delays for each filter in the array called delay.

B. Software Pipelining

For the optimal execution configuration selected as de-
scribed in Section IV-A, the firing rates of the filters in a prim-
itive steady state schedule are different from the corresponding
firing rates in the primitive steady state schedule in the original
StreamIt program. Each thread of the filter executing on the
GPU corresponds to one firing in the primitive steady state
schedule of the original StreamIt program. Thus the push and
pop rates of the filter executing on the GPU is the base push
rate multiplied by the number of threads chosen to execute
the filter. These scaled push and pop rates correspond to the
unrolled stream graph, which is identified as the near optimal
execution configuration by our heuristic algorithm.

We generate the ILP constraints for software pipelining the
unrolled stream graph corresponding to the optimal execution
configuration. We then use CPLEX, an industrial strength ILP
solver, to solve the ILP formulation. Since our ILP formulation
is a constraint problem rather than an optimization problem,
the time required for solving the ILP formulation is expected
to be rather low.

C. Code Generation

The solution to the ILP obtained is used to orchestrate the
execution of the filters across the SMs on the GPU. Although



Fig. 8. A sequential buffer layout, which causes bank conflicts

all the SMs are required to have a single kernel entry point,
the individual SMs may diverge with no performance penalty.
Once the wk,v,p, the ok,v , and the fk,v have been determined
from the ILP solution, we generate a single software pipelined
kernel, with the parts required to execute on individual SMs
separated using a switch statement. Within each SM, the
instances of filters are orchestrated to execute in increasing
order of the ok,v variables corresponding to them. Ties are
broken arbitrarily, since it implies that the two instances of
filters are not related by a producer–consumer relationship.
We use the predicated kernel-only code generation schema
described in [16], within each case of the switch statement,
with the staging predicate implemented as an array, similar to
the scheme described in [9].

D. Optimizing Buffer Layout

We mentioned in Section II that to achieve the high band-
widths that GPUs are capable of delivering, the accesses to
device memory need to be coalesced. We propose a buffer
layout scheme to ensure that accesses to device memory are
coalesced. Figure 8 illustrates the problem, with an example
of a filter which has a pop rate of 4, executing with 4 threads
on a device with memory organized as 8 banks. The buffer
is organized sequentially, in the natural FIFO ordering of
elements. Thus, thread0 pops the first four elements, thread1,
the next four and so on. But the accesses by thread0 and
thread2, which occur at time instant t0, both hit bank B0,
causing these accesses to be serialized. Similar collisions occur
with respect to thread1 and thread3. Clearly, these collisions
occur at every memory access, reducing the utilization of the
memory bus and degrading performance. Further, the problem
affects both memory reads and writes.

The problem can be alleviated by streaming the entire
working set of all the threads into the shared memory in
each SM. The shared memory is also organized as banks, and
collisions still degrade performance on shared memory, but the
degradation is small, since the shared memory has an access
latency of 1 cycle [1] as compared to the 400 – 600 cycle
latency of the global memory. However, this approach does
not scale well for filters with large working sets. For example,
a filter that pushes 64 ints and pops the same number of
ints at each firing, can then be executed with a maximum of
32 threads, since each SM has only 16KB of shared memory.
The low number of threads could now cause performance
degradation due to the memory latency that has been exposed
with the low levels of SMT. Clearly, the buffer layout scheme
needs to be chosen carefully to minimize bank conflicts.
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Fig. 9. The optimized buffer layout. The numbers at the top of each position
in the buffer show the natural FIFO ordering index that the optimized buffer
layout index maps to. We can see that all bank conflicts are avoided, since
threads access contiguous addresses. The access pattern of each warp is
exactly WarpBaseAddress + tid.

We leverage the fact that the production and consumption
rates on the channels between filters are the same across one
entire steady state in a steady state schedule. Consider the
stream graph shown in Figure 9. Filter A has a push and pop
rate of 2 and filter B has a push and pop rate of 1. Also, filter A
and B execute with 256 threads and 128 threads respectively.
So there would be 1 instance of A in the steady state schedule
and 4 instances of B. We organize the buffers such that the first
128 elements of the buffer contains the first popped elements
for each of the 128 threads. This is shown in Figure 9. We
group threads into clusters of 128 threads, since this is the
gcd of the thread block sizes that we consider. Each thread
of each cluster of 128 threads, pops (pushes) the first token
it consumes (produces) from contiguous locations in memory.
Thus, it is guaranteed that no bank conflicts can occur between
accesses of threads in the same block. It is sufficient if the
very first input buffer to the stream graph is shuffled, since
after that, we can modify the push() and pop() routines to
ensure that the data values in the buffers internal to the stream
graph are communicated in a consistent manner. Formally, we
define the shuffle function in terms of the number of tokens
pushed or popped in one entire steady state execution of the
stream graph as follows:

shuff[i] =buff
[⌊

i

128

⌋
+ (i mod 128)× steady pop rate

]
,

∀i ∈ [0, steady pop rate− 1]

where steady pop rate = oc × kc × tc

128 . Here, c is the first
filter of the stream graph in a topological sort ordering. oc

is the number of elements pushed by one thread of filter c.
kc is the number of steady state firings of c in the primitive
schedule. tc is the number of threads that c is executed with.

The index j of the nth element popped by a thread whose
thread index is tid in an instance of a filter with pop rate o is
given by:

j = 128× n+
⌊
tid

128

⌋
× 128× o+ (tid mod 128), n < o



Similarly the index k of the mth element pushed by a thread
whose thread index is tid in an instance of a filter with push
rate u is given by:

k = 128×m+
⌊
tid

128

⌋
× 128× u+ (tid mod 128), m < u

The first term in both equations sets up the offset for the push
or pop. The second term serves to organize the pushes or pops
into groups of 128, and the final term indicates exactly where
in the current block of 128, the element needs to be pushed
to or popped from.

With this buffer layout scheme, we totally avoid all bank
conflicts and obviate the need to use shared memory. Further,
the efficiency of the scheme is oblivious to the push and pop
rates of the individual filters.

V. EXPERIMENTAL EVALUATION

We have implemented the proposed compilation methodol-
ogy on the StreamIt compiler tool-chain. In this section, we
demonstrate the effectiveness of our methodology and com-
pare it with two alternative approaches to solve the problem:

1) A software pipelined version that does not coalesce
accesses to device memory.

2) A serialized execution model, where all filters execute a
Single Appearance Schedule (SAS) [12], the execution
spanning across all SMs available, with as much data
and SMT parallelism as supported by the GPU. How-
ever, since a SAS schedule typically has the maximum
buffer requirement among all steady state schedules, the
buffer requirements of the SAS schedule are constrained
to be less than or equal to the buffer requirements of the
software pipelined schedule to ensure a fair comparison
between the two approaches.

A. Experimental Methodology

In order to evaluate our scheme, we use benchmarks
distributed along with the StreamIt compiler toolkit version
2.1.1 [17]. The details of each benchmark and a brief descrip-
tion are provided in Table I. We compile each benchmark
as described in Figure 5. The nvcc compiler is then used
to compile the resulting sources to an executable form. We
choose to target 16 blocks to match the 16 SMs available.
We only consider programs with stateless filters in this study.
Each benchmark was compiled and executed on a machine

with dual quad-core Intel Xeon processors, running at 2.83
GHz, with 16 GB of FB-DIMM main memory. The machine
runs Linux, with kernel version 2.6.18, and the NVIDIA driver
version 173.14.09. We have used a GeForce 8800 GTS 512
GPU with 512 MB of device memory for our experiments. In
the results presented later, we do not report execution times,
but report only the speedups relative to a single threaded CPU
executing the same program. We define speedup = thost

tgpu
,

where thost is the time taken for executing same program on
the host CPU mentioned, with a single thread of execution and
tgpu is the time taken for executing the same program on the
GPU. The CPU version of the program was compiled using the

Benchmark Filters Peeking Description
Filters

Bitonic 58 0 Bitonic sorting network for
sorting 8 integers.

BitonicRec 61 0 Recursive implementation
of the bitonic sorting network.

DCT 40 0 8x8 Discrete Cosine Transform.
DES 55 0 Implementation of the DES

encryption algorithm.
FFT 26 0 Fast Fourier Transform
Filterbank 53 16 Filter bank to perform

multirate signal processing.
FMRadio 67 22 Software FM Radio with equalizer.
MatrixMult 43 0 Blocked matrix multiply.

TABLE I
BENCHMARKS EVALUATED

uniprocessor backend of the StreamIt compiler suite. The C
sources produced by the uniprocessor backend were compiled
with gcc using optimization level -O3.

The timing information for the GPU version was collected
using the event mechanism provided by the CUDA framework,
while the timing information for the CPU version was col-
lected using the standard UNIX syscall gettimeofday().
The timing measurements are reported as speedups over the
base CPU version, with both versions doing the same amount
of work.

B. Experimental Results

We evaluate the following aspects of our software pipelining
implementation in our experiments:

1) The effect of coarsening the granularity of the software
pipelined schedule on the execution time.

2) Comparison of our methodology with a software pipelin-
ing solution that does not coalesce accesses to device
memory.

3) Comparison with a serialized (one filter at a time,
but fully data parallel SAS schedule, which coalesces
accesses to device memory.

Figure 10 shows the effect of coarsening the granularity
on the execution time. The results for each benchmark are
plotted along with the geometric mean as the last bar. In the
SWPn schedule, each instance of a filter is iterated n times to
increase the granularity of the GPU kernel. This does not affect
the optimality of the schedule, since the delay of each filter
is increased by the same proportion, thereby leaving the work
distribution still uniform. This has the effect of increasing the
amount of work done per kernel invocation, amortizing the
cost of launching kernels on the GPU over more iterations.
We observe from Figure 10 that the optimized SWP schemes
achieve a speedup of 1.87X to 36.83X for the benchmark
programs. Further, the gains start to plateau between SWP4
and SWP8 for all benchmarks.

We now compare the performance of our scheme with two
other schemes: (i) SWPNC is the same as our implementation,
except that memory access coalescing is not done. For this,
the profile runs are also executed without memory access
coalescing. However, if the number of threads with which the
filter is to be executed is such that the working set (the push
and the pop set) can fit into shared memory, then we bring



Bitonic BitonicRec DCT DES
5308416 4472832 29360128 59768832
FFT Filterbank FMRadio MatrixMult
25165824 7471104 1671168 92602368

TABLE II
THE BUFFER REQUIREMENTS FOR EACH BENCHMARK. ALL SIZES ARE IN

BYTES.

in the entire working set into shared memory using coalesced
reads. Note that the performance gains from this approach
are highly dependent on the push and pop characteristics of
the filter. (ii) The Serial scheme is such that every filter
is run as a separate kernel in a SAS schedule. We fix the
number of blocks with which a filter executes to 16 — same
as in the SWP scheme — and set the number of threads
so that the buffer usage is less than or equal to that in
SWP8. No buffer sharing is performed in all our schemes;
in other words, a buffer allocated for a channel is not shared
with another [18]. Table II shows the buffer requirements of
the optimized software pipelined schedule which has been
coarsened 8 times (SWP8) for each benchmark. Although the
serial scheme executes filters in a serial fashion, we have
implemented this scheme such that device memory accesses
are coalesced.

The optimized software pipelining scheme performs better
than the alternative schemes in all benchmarks, except for
the MatrixMul and the DCT benchmarks, where the serial
version performs slightly better. Firstly, these benchmarks have
very large register requirements, causing the local variables
to be spilled to device memory, increasing the bandwidth
requirements. Secondly, these benchmarks display a phased
behavior, with each phase having a splitter which exposes a
large amount of task parallelism. However very little work is
done in the task parallel branches before a joiner that combines
the results of the task parallel branches and passes them on
to the next phase. These joiners and splitters are bandwidth
hungry by nature, since they only move data around, without
any computation. Our scheme does not take these second order
effects into account. We believe that this skews the actual
execution times of the filters, leading to an imbalanced work
distribution. The study of such phased behavior in stream
programs, is an interesting area of future research, but is
beyond the scope of this work.

SWPNC performs poorly in all benchmarks, yielding a
maximum speedup of only 1.22X, except in the Filterbank
and FMRadio. The poor performance can be explained as
being caused by non-coalesced accesses under-utilizing the
memory bus. The high speedups of 11.59 and 31.78 in the
Filterbank and FMRadio benchmarks are due to the fact that
in these benchmarks, the entire push and pop working set
of all the threads fits into the shared memory for each filter
and hence is brought into shared memory and written back
from shared memory, using a series of coalesced accesses.
Bank conflicts do occur in shared memory, however, these
are 1-cycle conflicts and do not impose a severe performance
penalty, yielding a net performance gain.

17.46

18.41
19.45 15.85 30.93

33.82

36.83

S
p

e
e

d
u

p

Bit
on

ic

Bit
on

ic
Rec

D
E
S

D
CT

FFT

Filt
er

Ban
k

FM
Rad

io

M
at

ri
xM

ul
t

G
eo

m
et

ri
c 

M
ea

n

0

2

4

6

8

10

SWP

SWP 4

SWP 8

SWP 16

Fig. 10. Impact of Coarsening the granularity: SWP - Optimized SWP
schedule with no coarsening; SWP 4 - Coarsened 4 times; SWP 8 - Coarsened
8 times; SWP 16 - Coarsened 16 times.

11.59

16.3
18.41 31.78

19.76

33.82

S
p

e
e

d
u

p
Bit

on
ic

Bit
on

ic
Rec

D
ES

D
C
T

FFT

Filt
er

Ban
k

FM
R
ad

io

M
at

ri
xM

ul
t

G
eo

m
et

ri
c 

M
ea

n

0

2

4

6

8

10
SWPNC

Serial

SWP 8
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coarsened 8 times; SWPNC - SWP implementation with No Coalescing;
Serial - Serial execution of filters using a SAS schedule.

We conclude the discussion on the experimental results
with mention of the efficiency of the compilation process. We
have used CPLEX version 9.0, running on Linux to solve the
ILP. The machine used was a quad processor Intel Xeon at
3.06GHz, with 4GB of RAM. However, for all the solution
times reported, CPLEX was running as a single threaded
application and hence did not make use of the SMP available.
The ILP solution process which is the most complex step of
the compilation trajectory, is quite fast for all the benchmarks.
The methodology we used to solve the ILP was to determine1

the the lower bound on the II as max(ResMII,RecMII).
Once this was done, the solver was allotted 20 seconds to

attempt a solution with this II. If it failed to find a solution
in 20 seconds, the II was relaxed by 0.5% and the process
was repeated until a feasible solution was found. It should
also be noted that the compilation time was dominated by the
nvcc compiler which takes 1 – 2 orders of magnitude more
time than the ILP solver. All of the benchmarks took less
than 30 seconds to solve, except for Bitonic, BitonicRec and
DCT, which took 161, 122 and 178 seconds respectively. All
solutions were found within a 5% relaxation on the II, except
for FFT and FMRadio, both of which required a 7% relaxation.
Thus the proposed solution is quite efficient.

1RecMII was 0 for all the benchmarks, since none of the benchmarks in
the set of benchmarks provided with the StreamIt distribution had feedback
loops and we have not considered stateful filters.



VI. RELATED WORK

Stream graphs are fairly well studied in literature, with
the early works by Lee, et. al. [12] [11], focusing on the
Synchronous Data Flow (SDF) model of computation and
the Stream Flow Graphs studied by Gao, et. al. in [19].
Govindarajan, et. al. have studied the software pipelining of
Regular Stream Flow Graphs (RSFGs) [15], using a linear
programming formulation. The framework was extended to
reduce the buffer requirements of rate optimal r-periodic
schedules in [20].

More recently, the StreamIt project has revived interest
in the dataflow graph model of computing [17]. Although
StreamIt introduces a peek construct that allows filters to
inspect data on the input channels without consuming it,
StreamIt graphs form a subset of RSFGs, since the peek can
be implemented as a filter with internal state. Thus StreamIt
graphs have the same schedulability properties as RSFGs.
While past research has focussed on software pipelining the
execution of StreamIt graphs to target the Raw architec-
ture [21] [5] and the Cell BE architecture [9] [22], to the
best of our knowledge we are the first to have proposed a
framework for compiling and executing StreamIt programs on
GPUs.

Recent work on GPUs has focused on the program opti-
mization space pruning [2]. This method reduces the search
space in execution configuration selection and optimization
space considerably and could be used in place of the pro-
filing methodology that we have suggested. Other work on
GPUs have primarily focused on application performance
tuning [23].

VII. CONCLUSIONS

We have described an efficient framework for mapping
StreamIt programs to GPUs. Our framework software pipelines
the execution of the filters and performs both scheduling and
assignment of filters to processors. We also present a novel
buffer layout technique for GPUs which facilitates exploiting
the high memory bandwidth available in GPUs. The proposed
scheduling exploits both the scalar units in GPU, to exploit
data parallelism, and multiprocessors, to exploit task and
pipeline parallelism. Further it takes into consideration the
synchronization and bandwidth limitations of GPUs, yielding
speedups between 1.87X and 36.83X over a single threaded
CPU.
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